

IMD-WMO Joint group fellowship training program on NWP

Theme: Numerical methods
Lecture-3-8
Somenath Dutta

Different types of differential eqations

- Categorization -I:
- Ordinary: $\frac{d^{2} u}{d t^{2}}+\omega^{2} u=0$
- Partial: $\frac{\partial w}{\partial t}=-u \frac{\partial w}{\partial x}-\alpha \frac{\partial p}{\partial z}-\mathrm{g} ; \frac{\partial^{2} T}{\partial t^{2}}=-k \frac{\partial^{2} T}{\partial x^{2}}$
- Categorization - II:
- Linear: $\frac{\partial w}{\partial t}=-c \frac{\partial w}{\partial x} ; c$ is constant
- Non-Linear: $\frac{\partial T}{\partial t}=-u \frac{\partial T}{\partial x}$

General form of $2^{\text {nd }}$ order PDE

General form of $2^{\text {nd }}$ order PDE is: $A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=\mathrm{G}$
A,B,C,D,E,F are coefficients, may be all of them constants or a couple/all of them may be functions of x, y; G is a known quantity may be a constant or a function of x, y and $u(x, y)$ s an unknown function to be determined.

If all these coefficients are constants or functions of independent variables (x, y), then the resulting PDE is known as a Linear PDE. Example: $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$

On the other hand, if at least one these coefficients is a function dependent variable, then the resulting PDE is known as a non-linear PDE. Example: $u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}$

Governing equations of NWP

- $\frac{\partial u}{\partial t}=-\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] u-\frac{1}{\rho} \frac{\partial p}{\partial x}-2 \Omega(w \cos \varphi-v \sin \varphi)+\frac{u v}{a} \tan \varphi-\frac{u w}{a}+\frac{\mu}{\rho} \nabla^{2} u$,
- $\frac{\partial v}{\partial t}=-\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] v-\frac{1}{\rho} \frac{\partial p}{\partial y}-2 \Omega(u \sin \varphi)-\frac{u^{2}}{a} \tan \varphi-\frac{v w}{a}+\frac{\mu}{\rho} \nabla^{2} v$
- $\frac{\partial w}{\partial t}=-\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] w-\frac{1}{\rho} \frac{\partial p}{\partial z}-g+2 \Omega(u \cos \varphi)+\frac{u^{2}+v^{2}}{a}+\frac{\mu}{\rho} \nabla^{2} w$,
- $\frac{\partial T}{\partial t}=-\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] T+\frac{1}{c_{v}} \frac{d Q}{d t}-(\gamma-1) T\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)$
- $\frac{\partial \rho}{\partial t}=-\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] \rho-\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right), \frac{\partial q}{\partial t}=-\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] q$
- $p=\rho R T$
- \Rightarrow Governing equations are non-linear partial differential equation
- These non-linear PDE can't be solved analytically, a couple of the reasons for which are:
- We don't have any analytical expression for the time \& space variations of the Meteorological variables.
- Rather we have their numerical values at discrete points in space at a given time
- Coefficients of the non-linear terms also don't have known analytical expression.
- Then what?
- Proceed for alternative approach - Numerical methods is one of the alternative approaches for time integration of the model equations.

Numerical methods

- In numerical method first the continuous time and 3-D space domain are discretized, like, $\left\{(x, y, z):(x, y, z) \in R^{3}\right\} \rightarrow\left\{(i \Delta x, j \Delta y, k \Delta z):(i, j, k) \in \mathbb{Z}^{3} \& \Delta x, \Delta y, \Delta z\right.$ given $\}$ and time domain $\{t: 0 \ll t<$ $\infty\} \rightarrow\{n \Delta t: n \in \mathbb{Z} \& \Delta t$ given $\}$.

The discrete spatial points ($i \Delta x, j \Delta y, k \Delta z$) are denoted by (i, j, k) and called (i, j, k) grid point. Similarly, the discrete time $n \Delta t$ is called ' n ' th time step.

- In numerical method values of the field variables (u, v, w, p, T, q, ρ) are specified at all discrete grid points at the time step ' 0 ' (initial time).
- Using these values of the field variables at different grid points at a given time step, spatial derivatives of the field variables are approximated numerically using a suitable finite difference scheme (FDS), for specifying the right-hand sides of the equations completely.
- This is followed by numerical integration in time for predicting values of the variable valid at next time step.

.....Numerical methods

- Finite difference methods:
- To approximate numerically the time \& space derivatives of the variables
- Major finite differencing techniques:
- Forward
- Backward
- Central or leapfrog
- Taylor's series: It is known that if a real valued function $f(x)$ is infinitely differentiable over the closed interval $[a, a+h]$, i.e., if $f(x)$ is analytical over $[a, a+h]$, then
$f(a+h)=f(a)+\sum_{n=1}^{\infty} \frac{h^{n}}{n!} f^{(n)}(a)$. Meteorological variables are assumed to be continuous in space \& time domain.
- Thus in a given grid $\left[x_{j}, x_{j+1}\right], f_{j \pm 1}^{n}=f\left(x_{j \pm 1}, n \Delta t\right)=f\left(x_{j} \pm \Delta x, n \Delta t\right)=f\left(x_{j}, n \Delta t\right) \pm$ $\sum_{l=1}^{\infty} \frac{(\Delta x)^{l}}{l!}\left(\frac{\partial^{l} f}{\partial x^{l}}\right)_{j}^{n}=f_{j}^{n} \pm \sum_{l=1}^{\infty} \frac{(\Delta x)^{l}}{l!}\left(\frac{\partial^{l} f}{\partial x^{l}}\right)_{j}^{n}$
And $f_{j}^{n \pm 1}=f_{j}^{n} \pm \sum_{k=1}^{\infty} \frac{(\Delta t)^{k}}{k!}\left(\frac{\partial^{k} f}{\partial t^{k}}\right)_{j}^{n}$

.....Numerical methods

Forward differencing scheme (FDS):

- $\left(\frac{\partial f}{\partial t}\right)_{(i, j, k)}^{n} \approx \frac{f_{i j k}{ }^{n+1}-f_{i j k}{ }^{n}}{\Delta t}+$ Terms multiple of Δt,
- $\left(\frac{\partial f}{\partial x}\right)_{(i, j, k)}^{n} \approx \frac{f_{(i+1) j k}{ }^{n}-f_{i j k}^{n}}{\Delta x}+$ Terms multiple of Δx etc.
- Error $\sim O(\Delta x, \Delta y, \Delta z, \Delta t)$

.....Numerical methods

Backward differencing scheme (BDS):

- $\left(\frac{\partial f}{\partial t}\right)_{(i, j, k)}^{n} \approx \frac{f_{i j k}{ }^{n}-f_{i j k}{ }^{n-1}}{\Delta t}+$ Terms multiple of Δt,
- $\left(\frac{\partial f}{\partial x}\right)_{(i, j, j)}^{n} \approx \frac{f_{i j k}^{n}-f_{(i-1) j k}{ }^{n}}{\Delta x}+$ Terms multiple of Δx etc.
- Error $\sim O(\Delta x, \Delta y, \Delta z, \Delta t)$

.....Numerical methods

Central differencing scheme or leap frog scheme (LFS):

- $\left(\frac{\partial f}{\partial t}\right)_{(i, j, k)}^{n} \approx \frac{f_{i j k}^{(n+1)}-f_{i j k}^{(n-1)}}{2 \Delta t}+$ Terms multiple of $(\Delta t)^{2}$,
- $\left(\frac{\partial f}{\partial x}\right)_{(i, j, k)}^{n} \approx \frac{f_{(i+1) j k}^{n}-f_{(i-1) j k}^{n}}{\Delta x}+$ Terms multiple of $(\Delta x)^{2}$ etc.
- Error~O[($\left.\Delta x)^{2},(\Delta y)^{2},(\Delta z)^{2},(\Delta t)^{2}\right]$
- Non linear horizontal advection of a scalar $S(x, y)$ can be expressed as $-\overrightarrow{V_{H}} \cdot \overrightarrow{\nabla_{H} S}$

$$
\begin{aligned}
= & -\left(\mathrm{u} \frac{\partial S}{\partial x}+v \frac{\partial S}{\partial y}\right)=-\left(-\frac{\partial \psi}{\partial y} \frac{\partial S}{\partial x}+\frac{\partial \psi}{\partial x} \frac{\partial S}{\partial y}\right) \cdot .(1) \\
& =J(S, \psi) ; \text { where } \psi \text { is a stream function } \& J(S, \psi)
\end{aligned}
$$

Is the Jacobean of ψ and S . $J(S, \psi)$ can also be expressed as given below:

$$
\begin{align*}
& J(S, \psi)=\frac{\partial}{\partial x}\left(\psi \frac{\partial S}{\partial y}\right)-\frac{\partial}{\partial y}\left(\psi \frac{\partial S}{\partial x}\right) \ldots(2) \text { and } \\
& J(S, \psi)=\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{~S} \frac{\partial \psi}{\partial \mathrm{x}}\right)-\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{~S} \frac{\partial \psi}{\partial \mathrm{y}}\right) \ldots(3) \tag{3}
\end{align*}
$$

Arakawa 9-point Grid

Numerical approximation of Jacobean

Numerical approximate value of the 3 expressions of $J(\psi, S)$ can be expressed as follows:

$$
\left[\begin{array}{c}
\left(\psi_{(i+1, j)}-\psi_{(i-1, j)}\right)\left(s_{(i, j+1)}-S_{(i, j-1)}\right) \\
-\left(s_{(i+1, j)}-S_{(i-1, j)}\right)\left(\psi_{(i, j+1)}-\psi_{(i, j-1)}\right) \\
4 d^{2}
\end{array}\right]=J_{1} \ldots \text { (1) }
$$

$$
\left[\begin{array}{l}
\left\{\psi_{(i+1, j)}\left(S_{(i+1, j+1)}-S_{(i+1, j-1)}\right)-\psi_{(i-1, j)}\left(S_{(i-1, j+1)}-S_{(i-1, j-1)}\right)\right\}- \tag{2}\\
\frac{\left\{\psi_{(i, j+1)}\left(S_{(i+1, j+1)}-S_{(i-1, j+1)}\right)-\psi_{(i, j-1)}\left(S_{(i+1, j-1)}-S_{(i-1, j-1)}\right)\right\}}{}
\end{array}\right]=J_{2} \ldots(
$$

$\left[\begin{array}{c}\left\{s_{(i, j+1)}\left(\psi_{(i+1, j+1)}-\psi_{(i-1, j+1)}\right)-S_{(i, j-1)}\left(\psi_{(i+1, j-1)}-\psi_{(i-1, j-1)}\right)\right\} \\ -\left\{s_{(i+1, j)}\left(\psi_{(i+1, j+1)}-\psi_{(i+1, j-1)}\right)-S_{(i-1, j)}\left(\psi_{(i-1, j+1)}-\psi_{(i-1, j-1)}\right)\right\} \\ 4 d^{2}\end{array}\right]=J_{3} \ldots$

Numerical approximation of Laplacian

Laplacian of a scalar field $f(x, y)$ at any point (x, y) is given by, $\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$.

- $f_{i \pm 1, j}=f\left(x_{i \pm 1}, y_{j}\right)=f\left(x_{i} \pm \Delta x, y_{j}\right)=f\left(x_{i}, y_{j}\right) \pm$
$\sum_{l=1}^{\infty} \frac{(\Delta x)^{l}}{l!}\left(\frac{\partial^{l} f}{\partial x^{l}}\right)_{i, j}$
- $f_{i, j \pm 1}=f\left(x_{i}, y_{j \pm 1}\right)=f\left(x_{i}, y_{j}+\Delta y\right)=f\left(x_{i}, y_{j}\right) \pm$ $\sum_{l=1}^{\infty} \frac{(\Delta y)^{l}}{l!}\left(\frac{\partial^{l} f}{\partial y^{l}}\right)_{i, j}$

- Then, $\left(\nabla^{2} f\right)_{i, j} \approx \frac{f_{(i+1, j)}+f_{(i-1, j)}+f_{(i, j+1)}+f_{(i, j-1)}-4 f_{(i, j)}}{d^{2}}$; where
$\Delta x=\Delta y=\mathrm{d}$ is the grid length.

Relaxation method for solving Poison's equation

General form of $2^{\text {nd }}$ order PDE is: $A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=\mathrm{G}$
A,B,C,D,E,F are coefficients, may be all of them constants or a couple/all of them may be functions of x, y; G is a known quantity may be a constant or a function of x, y and $u(x, y)$ is an unknown function to be determined.
Above equation is called Parabolic, if $B^{2}-4 A C=0$

$$
\begin{aligned}
& \text { Elliptic, if } B^{2}-4 A C<0 \\
& \text { and Hyperbolic, if } B^{2}-4 A C>0
\end{aligned}
$$

Poison's equation is given by $\nabla^{2} u=G(x, y)$. For this equation, $A=B=1 ; C=D=E=F=0$. So, for this equation, $B^{2}-4 A C=-4<0 \Rightarrow$ Poison's equation is an elliptic PDE.

- Numerically approximate form of the above equation at a grid point (i, j) is

$$
\frac{u_{(i+1, j)}+u_{(i-1, j)}+u_{(i, j+1)}+u_{(i, j-1)}-4 u_{(i, j)}}{d^{2}}=G_{(i, j)}
$$

- This method starts with some initial guess values of the unknown function $u(x, y)$ at all grid points. If, $u_{(i, j)}^{(0)}$ is the initial guess value of $u(x, y)$ at any arbitrary grid point (i, j); then error in the initial guess, when substituted in the above equation, is given by

$$
R_{(i, j)}^{(0)}=\frac{u_{(i+1, j)}^{(0)}+u_{(i-1, j)}^{(0)}+u_{(i, j+1)}^{(0)}+u_{(i, j-1)}^{(0)}-4 u_{(i, j)}^{(0)}}{d^{2}}-G_{(i, j)}
$$

Above relation gives an improved guess value of $u(x, y)$ at a grid point (i,j)

- $u_{(i, j)}^{(1)}=\frac{d^{2}}{4} R_{(i, j)}^{(0)}+u_{(i, j)}^{(0)}$
- Then, following similar arguments, the error in the first improved guess is given by

$$
R_{(i, j)}^{(1)}=\frac{u_{(i+1, j)}^{(1)}+u_{(i-1, j)}^{(1)}+u_{(i, j+1)}^{(1)}+u_{(i, j-1)}^{(1)}-4 u_{(i, j)}^{(1)}}{d^{2}}-G_{(i, j)}
$$

- And subsequently the second improved guess value is obtained as
- $u_{(i, j)}^{(2)}=\frac{d^{2}}{4} R_{(i, j)}^{(1)}+u_{(i, j)}^{(1)}$

The iteration process is said to converges when two successive improved guess of the unknown function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ differs by a number smaller than a very small pre-assigned positive number, say, ε,i.e., when $\left|u_{(i, j)}^{(m+1)}-u_{(i, j)}^{(m)}\right|<\varepsilon$, at every grid point (i,j).
Then either of these two successive improved guess value may be treated as approximate numerical solution of Poison's equation at a grid point (i,j).
Using this method, knowing horizontal wind components (u, v) at different grid points, one can find out stream function (ψ), velocity potential (χ), rotational wind $\left(\overrightarrow{V_{\psi}}\right)$ and divergent wind $\left(\overrightarrow{V_{\chi}}\right)$, using following steps:

Application

$\operatorname{Vorticity}(\varsigma): \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \approx\left[\frac{v_{(i+1) j k}^{n}-v_{(i-1) j k}^{n}}{2 \Delta x}\right]-\left[\frac{u_{(j+1) k}^{n}-u_{(j-1) k}^{n}}{2 \Delta y}\right]$
Divergence $\left(D_{h}\right)=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \approx\left[\frac{u_{(i+1) j k}^{n}-v_{(i-1) j k}^{n}}{2 \Delta x}\right]+\left[\frac{v_{i(j+1) k}^{n}-v_{i(j-1) k}^{n}}{2 \Delta y}\right]$

- Set up the poison's equations for the stream function (ψ) and velocity potential $(\chi): \nabla^{2} \psi=$ $\zeta(x, y)$ and $\nabla^{2} \chi=-D_{h}(x, y)$.
- Solve them using Relaxation method to find out ψ, χ at each grid point (i, j) at any vertical level ' k '.
- Then, rotational \& divergent wind at any grid point are obtained as:
- $V_{\psi}=\hat{\imath}\left(-\frac{\partial \psi}{\partial y}\right)+\hat{\jmath}\left(\frac{\partial \psi}{\partial x}\right) \approx \hat{\imath}\left(-\left[\frac{\psi_{i(j+1) k}^{n}-\psi_{i(j-1) k}^{n}}{2 \Delta y}\right]\right)+\hat{\jmath}\left[\frac{\psi_{(i+1) j k}^{n}-\psi_{(i-1) j k}^{n}}{2 \Delta x}\right]$ and
- $V_{\chi}=-\left[\hat{\imath}\left(\frac{\partial \chi}{\partial x}\right)+\hat{\jmath}\left(\frac{\partial \chi}{\partial y}\right)\right] \approx-\left\{\hat{\imath}\left[\frac{\chi_{(i+1) j k}^{n}-\chi_{(i-1) j k}^{n}}{2 \Delta x}\right]+\hat{\jmath}\left[\frac{\chi_{i(j+1) k}^{n}-\chi_{i(j-1) k}^{n}}{2 \Delta y}\right]\right\}$

A few important concepts about Finite Difference Scheme

- Consistency or compatibility of a FDS: A FDS is said to be compatible or consistent if the FD approximation of derivative tends to its exact value or analytical value at each point / at each time as $\Delta x, \Delta y, \Delta z, \Delta t \rightarrow 0$.
- Convergence: Numerical solution of a well posed IVP is said to be convergence if it tends to analytical or exact solution as $\Delta x, \Delta y, \Delta z, \Delta t \rightarrow 0$
- Lax equivalence theorem: Given a well posed IVP and a consistent FDS; then numerical solution is convergent if and only if it is stable, i.e., as number of time step (n) $\rightarrow \infty$, at each point.

Explicit \& implicit difference scheme

- To understand the concept of implicitness or explicitness of a differencing scheme, we refer the linear advection equation, viz., $\frac{\partial f}{\partial t}=-c \frac{\partial f}{\partial x}$, with c as constant phase speed.
- If the above equation is approximated numerically at a discrete time step ' n ' and at a discrete spatial grid ' i ', using forward and leap frog schemes, we get,
Forward difference scheme: $\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=-c \frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x} \Rightarrow u_{i}^{n+1}=f\left(u_{i}^{n}, u_{i+1}^{n}\right)$
Central difference scheme: $\frac{u_{i}^{n+1}-u_{i}^{n-1}}{2 \Delta t}=-c \frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x} \Rightarrow u_{i}^{n+1}=f\left(u_{i}^{n-1}, u_{i+1}^{n}, u_{i-1}^{n}\right)$
- In both the above schemes, values at future time step is obtained using the values at present and/or past time steps. Such scheme is known as explicit scheme.

....Explicit \& implicit difference scheme

- Time derivative is approximated numerically using forward difference scheme and space derivative is approximated using central difference scheme, averaged between time steps ' n ' \& ' $(\underline{n}+1)$ ', as follows:
- $\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=-\mathrm{C}\left[\frac{\frac{\left(u_{i+1}^{n+1}+u_{i+1}^{n}\right)}{2}-\frac{\left(u_{i-1}^{n+1}+u_{i-1}^{n}\right)}{2}}{2 \Delta x}\right]$
$\Rightarrow u_{i}^{n+1}=f\left(u_{i}^{n}, u_{i+1}^{n}, u_{i-1}^{n}, u_{i+1}^{n+1}, u_{i-1}^{n+1}\right)$
- Thus, value of the variable at a grid point at future time step $(\mathrm{n}+1)$
 requires present value of the variable at the grid point and future value at neighbouring grid points.
- Such scheme is known as implicit scheme.

Issues with numerical methods- Linear computational instability-CFL criteria

- Solve the linear advection equation: $\frac{\partial f}{\partial t}=-c \frac{\partial f}{\partial x}$.

Given, $f(x, 0)=A e^{i k x}$, c is constant phase speed.

- Its analytical/exact solution is $f(x ; t)=A e^{i k(x-c t)}$, a bounded solution.
- However, when attempted to solve numerically using LFS, it can be shown that the numerical solution is stable if $c \frac{\Delta t}{\Delta x}<1$, otherwise unstable.
- Thus computational stability for LFS is conditional only

CFL criteria

Numerical solution of linear advection equation using LFS:

- $u_{j}^{n}=B^{n \Delta t} \exp (i k j \Delta x) \Rightarrow$
substituting in the LAE at ith grid \& nth time step, we obtain
$B^{\Delta t}-B^{-\Delta t}=2 i\left(c \frac{\Delta t}{\Delta x} \operatorname{Sin}(k \Delta x)\right) \Rightarrow B^{\Delta t}= \pm \sqrt{1-\sigma^{2}}+i \sigma$, where $\sigma=$
$c \frac{\Delta t}{\Delta x} \operatorname{Sin}(k \Delta x)$. If $\sigma>1$, then magnitude of one of the solutions exceeds 1

$$
\Rightarrow B^{n \Delta t} \text { becomes large for large ' } n \text { '. }
$$

Thus numerical solution is stable if $\sigma<1 \Rightarrow c \frac{\Delta t}{\Delta x}<1$. This is known as CFL criteria.
Thus LFS is conditionally stable.

Physical interpretation of CFL criteria

- Let us consider two successive grid points $i \Delta x \&(i+1) \Delta x$.
- Suppose there is an error caused at the grid point
$i \Delta x$ and the error propagates forward at a speed ' c '.
- Then in one time step integration, the error can propagate a distance $c \Delta t$ forward.
- Thus to ensure that the error can't reach the next grid point $(i+1) \Delta x$, in one time integration to contaminate this grid point by the error, we should have, $c \Delta t<\Delta x \Rightarrow$ $c \frac{\Delta t}{\Delta x}<1 \Rightarrow$ Physical interpretation of CFL criteria.

Stability using semi implicit scheme

Numerical solution of linear advection equation using semi implicit scheme $\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=-\mathrm{c}\left[\frac{\frac{\left(u_{j+1}^{n+1}+u_{j+1}^{n}\right)}{2}-\frac{\left(u_{j-1}^{n+1}+u_{j-1}^{n}\right)}{2}}{2 \Delta x}\right]$

- $u_{j}^{n}=B^{n \Delta t} \exp (i k j \Delta x)$
- substituting in the LAE at ith grid \& nth time step, we obtain
- $\left(B^{\Delta t}-1\right)=-i c \frac{\Delta t}{2 \Delta x} \sin (k \Delta x)\left[\left(B^{\Delta t}+1\right)\right] \Rightarrow \frac{\left(B^{\Delta t}-1\right)}{\left(B^{\Delta t}+1\right)}=-\frac{i \sigma \sin (\mu \Delta x)}{2} \Rightarrow B^{\Delta t}=$ $\frac{2-i \sigma \sin (\mu \Delta x)}{2+i \sigma \sin (\mu \Delta x)}==\frac{4+\sigma^{2} \sin ^{2}(\mu \Delta x)-4 i \sigma \sin (\mu \Delta x)}{4+\sigma^{2} \sin ^{2}(\mu \Delta x)} \Rightarrow\left|B^{\Delta t}\right|=1$
- Thus, $\left|B^{\Delta t}\right|^{n}=1$ for any time step ' n '. Hence this scheme is unconditionally or absolutely stable.

Issues with numerical methods- Non-linear instability

- Consider nonlinear advection equation $\frac{\partial f}{\partial t}=-\mathrm{u} \frac{\partial f}{\partial x}$, u is a function of x, t.
- Let us consider a limited interval $[a, b]$ and be divided into ' N ' equal segments, by inserting grid points, $a=x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n-1}, x_{n}=b$, with width δx between two arbitrary consecutive points.
- then the wave length of shortest possible wave is $2 \delta x$, as shown in adjoining figure.
- Let the dependent variables be expressed as $u(x, t)=$ $\sum_{k=1}^{n} u 1_{k} \cos k x+\sum_{k=1}^{n-1} u 2_{k} \sin k x$ and
- $f(x, t)=\sum_{k=1}^{n} f 1_{k} \cos k x+\sum_{k=1}^{n-1} f 2_{k} \sin k x$
- Then the product term will have term like $\sin (m+l) x, \cos (m+$ l) x etc.
- For some terms, $(m+l)>\frac{N}{2}$.
- Such terms corresponds to wave with wave length $<2 \delta x$.
- But the shortest wave, that can be represented with given grid arrangement is $2 \delta x$.
- Thus a wave with wave length shorter than $2 \delta x$ will be falsely represented by a relatively longer wave of wave length $2 \delta x$.

- This false representation of a shorter wave by a longer wave is known as aliasing.
- Repeated aliasing gives rise to non linear instability.
- It is due to the presence of non linear term $\mathrm{u} \frac{\partial f}{\partial x}$

Advection of a scalar field S can be expressed as $J(\psi, S), \psi$ being a stream function, related
with horizontal wind vector $\overrightarrow{V_{H}}$ as $\overrightarrow{V_{H}}=\vec{k} X \vec{\nabla} \psi$.
It can be shown that if different expressions of J are numerically approximated at (i, j)th grid point, numerically by say, $\mathrm{J}_{1}, \mathrm{~J}_{2} \& \mathrm{~J}_{3}$; then Arakawa Jacobian, defined by $J=\frac{\mathrm{J}_{1}+\mathrm{J}_{2}+\mathrm{J}_{3}}{3}$. If the advection term is numerically approximated by Arakawa Jacobian, then this Aliasing and non-linear instability can be eliminated.

- The governing equation for a non-divergent Barotropic model is
$\frac{d_{h}(\zeta+f)}{d t}=0$. In this model globally averaged ensthropy
$\left(\overline{\zeta^{2}}\right)$ and kinetic energy remains conserved.
It is shown that in this model if the horizontal advection of vorticity is approximated either by J_{1} or J_{2} or J_{3}; then both of averaged ensthropy $\left(\zeta^{2}\right)$ and kinetic energy don't remain conserved.
However when the Jacobean $J(S, \psi)$ is numerically approximated by $\frac{J_{1}+J_{2}+J_{3}}{3}$, then it has been seen that both $\left(\overline{\zeta^{2}}\right)$ and kinetic energy remains conserved. This ensures no Aliasing, thus non-linear instability is eliminated.

Thanks for kind \& patience hearing

